您所在的位置: 新闻频道 > 嘉兴新闻 > 图说嘉兴 > 正文
繁昌白癜风医院
嘉兴在线新闻网     2017-10-20 09:24:11     手机看新闻    我要投稿     飞信报料有奖
繁昌白癜风医院,甘肃儿童白癜风,沛县白癜风医院,文安白癜风医院,德州白癜风初期危害,尤溪白癜风医院,济宁治白癜风的仪器

原标题:谷歌推出基于注意机制的全新翻译框架,Attention is All You Need!

雷锋网AI科技评论消息,谷歌最近与多伦多大学等高校合作发表论文,提出了一种新的网络框架——Transformer。Transformer是完全基于注意力机制(attentionmechanism)的网络框架,放弃了RNN和CNN模型。

众所周知,在编码-解码框架中,主流的序列传导模型都是基于RNN或者CNN的,其中能完美连接编码器和解码器的是注意力机制。而谷歌提出的这一新框架Transformer,则是完全基于注意力机制的。

Transformer用于执行翻译任务,实验表明,这一模型表现极好,可并行化,并且大大减少训练时间。Transformer在WMT 2014英德翻译任务上实现了28.4 BLEU,改善了现有的最佳成绩(包括超过2个BLEU的集合模型),在WMT 2014英法翻译任务中,建立了一个新的单一模式,在八个GPU上训练了3.5天后,最好的BLEU得分为41.0,这在训练成本最小的情况下达到了最佳性能。由Transformer泛化的模型成功应用于其他任务,例如在大量数据集和有限数据集中训练英语成分句法解析的任务。

注意力机制是序列模型和传导模型的结合,在不考虑输入输出序列距离的前提下允许模型相互依赖,有时(但是很少的情况),注意力机制会和RNN结合。

模型结构如下:

编码器:编码器有6个完全的层堆栈而成,每一层都有两个子层。第一个子层是多头的self-attention机制,第二层是一层简单的前馈网络全连接层。在每一层子层都有residual和归一化。

解码器:解码器也是有6个完全相同的层堆栈而成,每一层有三个子层,在编码栈的输出处作为多头的attention机制。

注意(attention):功能是将Query和一组键-值对映射到输出,那么包括query、键、值及输出就都成为了向量。输出是值的权重加和,而权重则是由值对应的query和键计算而得。

source:arxiv

雷锋网了解到,谷歌这一模型在众多翻译任务中都取得了最佳成绩,其泛化模型也在其他识别任务中表现优异。谷歌对这一基于注意力机制的Transformer表示乐观,研究人员很高兴看到模型在其他任务中表现良好,谷歌计划研究Transformer的更广泛应用——其他形式的输入输出,包括图像、音频及视频等。

原文链接:https://arxiv.org/abs/1706.03762,雷锋网编译


来源:嘉兴在线—嘉兴日报    作者:摄影 记者 冯玉坤    编辑:李源    责任编辑:胡金波
 
 
安徽治白癜风的设备